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Abstract 

The transmission zeros of a flexible space structure (FSS) depend on the locations at which its 

sensors and actuators are positioned, and provide a great deal of information concerning the 

closed-loop performance that is achievable with this sensor/actuator arrangement. Furthermore, 

the zeros of non-collocated structures possess entirely different properties than those of the zeros 

of collocated structures. The first part of this report analyzes these properties, and quantifies the 

extreme sensitivity to sensor and actuator position that can occur for non-collocated zeros. 

The report then describes two computationally efficient techniques for the related problem of 

placing instruments on a flexible structure so as to minimize the disturbance effects of the slewing 

of one instrument on the pointing performance of the others. In both approaches, perturbation 

methods are used to derive ideal directions in which each instrument should be displaced so as to 

reduce some measure of cross-instrument observabiliti as much as possible; the difference 

between the approaches lies in the details of the observability measure used. The methods are 

illustrated by application to two structural models, one continuous and the other discrete; both 

demonstrate the improvement in performance that is achievable by the purely passive technique of 

repositioning instruments. Furthermore, in the course of this analysis, the degrees of 

controllability and observability of close structural modes are quantified in detail. 

Finally, therreport addresses the question of designing efficient decentralized controllers for FSS. 

One factor which must be borne in mind in this analysis is that the controllability and observability 

Grammian matrices which are usually studied are inherently open-loop quantities; they therefore do 

not reflect any decentralized structure present in the controller. In order to overcome this problem, 

new closed-loop Grammians are introduced here, and shown to be very useful for analysis of 

decentralized FSS controllers. In particular, they lead to a natural technique for performing a 

sequential loop-closing form of controller design, based on closing single inpudsingle output 

feedback loops between a set of decentralized sensor and actuator pairs, possibly collocated. 
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1. Introduction 

The positions at which sensors, actuators and sensitive instruments are placed on flexible space 

structures (FSS) is crucial to the pointing and tracking results that can then be obtained. For this 

reason, there has been a considerable amount of work done on this type of problem in the past; 

see, for instance, References 32,33,41 and 42 for recent research on this subject. 

In practice, flexible structures must often be controlled by means of non-collocated sensors and 

actuators. This may be necessary not only so as to avoid the performance limitations inevitable in 

collocated structures,-but also because construction of true collocated sensors and actuators is very 

difficult to achieve. (The NASA Langley CSI Evolutionary Model is a notable example of a 

structure which does possess essentially collocated sensors and actuators.) Unfortunately, non- 

collocation nearly always leads [l] to right half-plane transmission zeros. Furthermore, these 

zeros have been observed [2][3] to be, in some cases, expemely sensitive to the choice of FSS 

model order, as well as to the exact positions of sensors and actuators. This contrasts sharply with 

the collocated case, where the zeros always lie [4] in the left half-plane, and have sensitivities to 

model order [5] and modal parameters [6] which are comparable to those of the system poles. 

However, a quantitative explanation of the ill-conditioning of non-collocated zeros has not yet been 

obtained. 

This quest6n is addressed in the next three sections of this report, where it is shown that ill- 

conditioning occurs when the zero direction constrained mode shape [7][8] and its dual are nearly 

orthogonal. Two new condition numbers are then derived that quantify the sensitivity of the zeros 

to sensor and actuator position variations, and conclusions drawn concerning the zeros of near- 

collocated structures. These results are then used to study the difficult non-collocated 

sensor/actuator placement problem. 
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The report then describes two computationally efficient techniques for the related problem of 

placing instruments on a flexible structure so as to minimize the disturbance effects of the slewing 

of one instrument on the pointing performance of the others. In both approaches, perturbation 

methods are used to derive ideal directions in which each instrument should be displaced so as to 

reduce some measure of cross-instrument observability as much as possible; the difference 

between the approaches lies in the details of the observability measure used. Both versions use the 

closed-form Grammians of flexible structures [ 16][18] to find analytical expressions for the 

changes in the Hankel singular values (HSVs) of an FSS which occur as a result of a shift in 

instrument positions: However, one method is based on minimizing the largest of the Hankel 

singular values, while the other reduces the sum of the HSVs. It will be shown that the the first of 

these approaches is somewhat more computationally expensive than the second, but also gives 

more reliable results for certain types of problem. In the process of setting up the two techniques, 

extensive results will be presented on the degrees of con_trollability - 1  and observability of close 

modes of flexible structures. Such modes arise often in practice, typically as a result of either 

symmetry or repeated sub-structure elements, and are known to greatly complicate the question of 

determining the controllability and observability properties of such a structure. The new results 

presented here address this question in some detail. 

The observability perturbations computed using either of these two methods are then used to decide 

how to shift each instrument in turn so as to minimize cross-instrument interactions. For 

continuous structures, the orthogonal projection of this optimal shift direction onto the physical 

structure determines the optimal feasible shift for each instrument. The problem is somewhat more 

constrained for discrete, truss-like structures: in this case, the optimal shift direction now 

determines which of the few possible directions of motion is most efficacious. In either case, 

iterating over all instruments leads to a final set of highly non-interacting instrument locations on 

the structure. The two variants, i.e. that based on minimizing the maximal HSV and that based on 

reducing the HSV sum, are illustrated in Section 9 by application to a uniform simply-supported 
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plate in the continuous case, and the ASTREX truss structure in the discrete case. Both of these 

examples demonstrate the improvement in performance that is achievable by the purely passive 

technique of repositioning instruments, as opposed to an active control scheme. 

Finally, it should be noted that the control of flexible space structures (FSS)  is often analyzed in a 

centralized framework, where the outputs of all sensors on the structure are fed back to all of the 

actuators. However, a decentralized arrangement is much more amenable to practical 

implementation. In this type of system, only it specified subset of sensors (possibly only a single 

one) is connected to each particular actuator, giving rise to a set of independent local controllers. 

This constraint on the structure of the feedback gain matrix implies that decentralized controllers 

will generally possess lower performance than that of a centralized controller. For instance, there 

may exist closed-loop poles, known as decentralized$xed modes (the equivalent of uncontrollable 

poles in centralized control), which can be shifted by cent@ized feedback but not by decentralized 

control. This type of complication should be considered when designing decentralized controllers. 

The final part of the report addresses the question of designing efficient decentralized controllers 

for FSS. One factor which must be borne in mind in this analysis is that the controllability and 

observability Grammian matrices which are usually studied are inherently open-loop quantities; 

they therefore do not reflect any decentralized structure present in the controller. In order to 

overcome this problem, the new closed-loop Grammians are introduced here, and shown to be 

very useful for analysis of decentralized FSS controllers. In particular, they lead to a natural 

technique for performing a sequential loop-closing form of controller design, based on closing 

single inputkingle output feedback loops between a set of decentralized sensor and actuator pairs, 

possibly collocated. 
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2. Zeros of Flexible Structures 

Consider an n-mode model for the structural dynamics of a modally damped, non-gyroscopic, 

non-circulatory FSS with m sensors (measuring either rates or displacements) and an equal number 

of actuators. This model can be written in modal form [9] as 

where q is the vector of modal coordinates, and ip,, ar and ip, are the actuator, rate sensor and 

displacement sensor influence matrices, respectively. ai and Ti are the natural frequency and 

damping ratio of the ith mode; for the typical FSS [lo], the { Ti} are quite low (e.g. 0.005), and 

the { ai } occur in clusters of nekly-repeated frequencies. 

Defining the state vector x = (ff, q*)T yields the state spaze model x = Ax + Bu, y = Cx for this 

structure, where 

The transmission zeros [35] of this system are those values of s which reduce the rank of its 

system matrix, i.e. those s for which a non-trivial solution exists for the equation 
- - a 

-A  B X(S) 

(“.c aX-.(s,)=o- 

This can clearly be put in the form of a generalized eigenvalue problem 

(2.3) 

= a&, 
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where the generalized eigenvalue is the zero s = A ,  the corresponding generalized eigenvector is 

p = ( ~ ( s ) ~  - ~ ( s ) ~ ) r ,  and the matrices and 2 are defined as 

A =  and B =  -e 0 0 0  (2.5) 

The zeros of structures with collocated sensors and actuators can be shown to possess certain 

desirable properties. For instance, if the structure is undamped they interlace [7] the poles along 

the imaginary axis; if it is damped, the zeros are guaranteed to be stable, lying in a region [4] in the 

left half-plane which is defined by, and in the vicinity of, the open-loop poles. By contrast, certain 

of the zeros of a non-collocated structure will generally lie in the right half-plane[l][2], so giving 

rise to a non-minimum phase system with all its attendant control difficulties [35]. Similarly, the 

zeros of collocated structures are roughly only as sensitive to changes in model order [5] and 

structural parameters [6] as are its poles; no such guarankes are possible in the non-collocated 

case. In fact, the higher-frequency zeros of a non-collocated structure are typically extremely 

sensitive to changes in the assumed model order [2], a practical point of some significance. 
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3. Effects of Sensor and Actuator Perturbations 

The zeros of flexible structures with certain configurations of non-collocated sensors and actuators 

can also be extremely sensitive [2][3] to small changes in the positions of these sensors andlor 

actuators. This again contrasts with the collocated case, where the zeros can be shown [SI to be 
43 

relatively insensitive to small shifts in sensor/actuator location. First-order generalized eigenvalue 

perturbation methods will now be used to analyze this question, so providing insight into the 

circumstances under which this type of ill-conditioning can arise. 

If the generalized eigenvalue problem (2.4) has left generalized eigenvector q,  Le. the vector 

satisfying 

then a simple approxhnation can be derived for the generalized eigenvector A + 6A of the perturbed 

problem obtained for A H A + 62 and fi H fi + 62. Normalizing the left and right eigenvectors 

of the nominal problem so as to give llpl12 = llql12 = 1, then the corresponding eigenvalue of the 

perturbed problem is [ 1 1 1, to first order, 

In the particular case of sensor and a tuator motion on a flexible structure, th 

perturbations are, from (2.2) and (2.5), 

ppropriate matrix 

Now, premultiplying (2.4) by qH clearly gives A = qHAp/qX6p. This, together with (3.2) and 

the fact that 86 = 0, then yields 
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The right generalized eigenvector p was, from (2.3), of the form p = (x* -uTf .  If we write the 

left eigenvector q similarly as q = (z' -v*)', where the physical significance of these subvectors 

will be discussed below, the eigenvalue perturbation can be expanded as 

(3.5) 

It is interesting to note the similarity of the denominator of this expression to the condition number 

[12][13] of the standard eigenvalue problem. For, if Ax=ilx and z H A = z H A  with 

llxlli = llzlli = 1 ,  then the condition number of il with respect to perturbations in the matrix A is just 

c(il) = l/lzHxI, or the secant of the angle between the left and right eigenvectors. The eigenvalue 

will therefore be ill-conditioned whenever these vectors':-are nearly orthogonal. Equation (3.5) 

leads to a very similar observation for the generalized eigenvalue problem (2.4), the main 

difference being that it is orthogonality of the subvectors x and z that will lead to ill-conditioning, 

not orthogonality of the entire eigenvectors p and q . 

Z H ( 6 @ ,  O ) T U + V H ( m r  m,)x sa = 
Z H X  

The physical significance of this result can be made clearer by consideration of the structure of the 

vectors x and z .  If we write these as x =(xT x:>' and z=(zF z ; f ,  then (2.2) yields 

ax, 

for the right eigenvector. Thus, x2 is the constrained mode shape [7][8],  or zero direction, 

associated with the zero A. This is a forced mode of vibration of the structure which is excited 

from the actuator stations (equation (3.6a)), and gives rise to identically zero measured motion at 
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the sensor stations (the unobservability constraint (3.6b)). Considering the left eigenvector in a 

similar fashion gives 

(3.7) 

z1 is therefore the constrained mode shape associated with (the complex conjugate of) a that 

would be obtained for the dual structure which has sensors at the locations of actuators on the 

physical structure, and actuators at the physical sensor stations. These constrained mode shapes 

will now be shown to determine, to a large extent, the sensitivity of the zero 2 to sensor and 

actuator perturbations. 

Using the fact that Ax2 = x l ,  (3.5) becomes 

(3.8) 
z : m ~ u  + V H ( a  . m, + m,)X2 

(azf -+ z:)x2 
sa = 

The denominator of this expression can now be rewritten using the Ieft eigenvector equations to 

eliminate the subvector z2. These give 2; = zf[A - I, 

zp3Dqu + v H ( A  - m, + &,)x2 sa = 
-- z r [ 2 A  I,, + diug(2@1~)]x ,  - vH@,x2 * 

+ diug(2cio,)]  - vH@,, so we have 

This expression is particularly simple for undamped structures with no rate outputs, giving 

(3.9) 

(3.10) 

The significance of the constrained modes x ,  and z1 can now be seen: if these vectors are nearly 

orthogonal, the corresponding zero of the structure will be very sensitive to sensor andor actuator 

position changes. We have therefore proved the following result. 
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Lemma I: The sensitivity of the zero A of a flexible structure to actuator position changes is 

quantified by the condition number c,(A) = 1 1 ~ ~ 1 1 ~  -~~u~f2/2'1~zfx21; the corresponding condition 

number with respect to displacement sensor position is c,(a) = IIx2112 .1l~11,/2alzfx,l. 

Proofi By the properties of matrix norms we have ]8A] I c,(A,) - ~~8CDu~~2 + c,(A). I16@,l12, which is 

of the upper bound form desired for condition numbers. 

As noted previously, the zeros of collocated structures are generally far less sensitive to 

sensorlactuator placement errors than are those of non-collocated structures. This can now be 

proved from the preceding analysis. (Note that both z1 and v are purely real for such systems, so 

conjugate transposes are replaced by transposes below.) 

kmma 2: A zero A of a collocated structure has conditiokwmber with respect to both sensor and 

actuator positions given by c,(A) = llul12 - llx2 11,/2'111x211: = ~~u]12/2'1~~x2112 , the denominator of which 

is always non-zero for any A,# 0. 

Pro08 This follows from setting CD, = a,, which gives z1 = x2 and v = u, so reducing (3.10) to 

(3.11) x:&D:u + UTS<p,X2 - - UT (&D, + rnd)X2 8a = 
- - 2ax;x, 2'111x2 11: 

This result is analogous to the fact that the left and right eigenvectors of symmetric matrices are 

equal, and so the eigenvalues of such matrices are never ill-conditioned [12][13]. 

Another fundamental result concerning collocated undamped structures is that their zeros are 

always [7][4] purely imaginary. This is turn now implies the following. (A similar result also 

holds for structures with near-collocated actuators and rate sensors.) 
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Lemma 3: The zeros of a structure with near-collocated actuators and displacement sensors are, to 

first order, purely imaginary. 

Pruu$ Taking A = jwz in (3.1 l), we have 

6;1= -j. UT(&, + &,)x2 
2w,lb211: 

7 

which is also purely imaginary. 

(3.12) 

The sensitivity of the zeros to actuator and sensor positioning can have direct consequences for the 

sensitivity of the closed-loop poles obtained for this system. Consider, for instance, the case of 

output feedback 

u=-KY. (3.13) 
.-- 

The resulting closed-loop system has state matrix A = A - BKC, the eigenvalues of which are the 

closed-loop poles. Let 2 and 2 be the normalized right and left eigenvectors, respectively, 

corresponding to a closed-loop pole i. Then, the first-order perturbation of i with respect to a 

change in B (due to a shift in actuator position) is just [ 1211: 131 
S ~ G B K C ~  6 i  5 -  

iiH2 
(3.14) 

But -KC2 is just the control input .Ei required to excite the closed-loop system at this mode, and 

(by (2.2)) 6;8 = (ma O ) T .  Thus, (3.14) can be rewritten as 

(3.15) 

If K is sufficiently large that the closed-loop pole i is approximately equal to a zero, A ,  of the 

system, then the corresponding left and right closed-loop mode shapes 2 and 2 will be 

approximately equal to the corresponding left and right zero directions, z and x respectively. 

Thus, comparing (3.15) with (3.5) reveals that, in the high-gain case, the sensitivity of a closed- 

loop pole to shifts in actuator location is asymptotically equal to that of the zero it is approaching. 

This logical result will be illustrated graphically in the next section. 
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Finally, it should be noted that the zero perturbation results obtained above can also be used for the 

difficult problem of non-collocated sensor/actuator placement. A practical objective [32][33] is to 

shift sensors and/or actuators so as to make the resulting zeros as damped as possible, Le. so that 

their real parts are as large and negative as possible. In this way, the closed-loop poles obtained by 

applying output feedback or optimal state feedback [35] will be heavily damped, giving fast closed- 

loop response regulation. Considering an undamped structure with displacement sensors for 

simplicity, it can be seen from (3.10) that the effect on the zero il of shifting the za actuator by an 

amount 8bi (as yet unspecified) is to contribute a term 

(3.16) 

where ui is the zzh entry of u. This will have the desired result if the real vector hi is chosen so 

as to be as nearly as possible anti-parallel to the known vector Re(r), a simple condition to apply. 

Similar results clearly also hold for sensor placement. 
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4. Zeros Sensitivity Results 

In order to investigate the properties of non-collocated zeros in detail, consider the particular case 

of a uniform cantilever beam. The dimensions of this beam will be taken to be length 25 m, width 

0.1 m and depth 0.01 m, and its material properties those of aluminum (density 2.7~103 kg/m3, 

Young's modulus 7 .0~10~0 N/m2). A single force actuator is located at the free tip of the beam, 

and a linear displacement sensor moved along its entire length, i.e. through dl normalized lengths 

p ,  0 I p 5 1. Many of the resulting transmission zeros are found to occur in positivdnegative real 

or imaginary pairs, as is the case for distributed parameter models. However, there also exist 

general complex zeros, with these occurring in quadruples symmetric about the real and 

imaginary axes. These complex zeros, the existence of which is not suggested from distributed 

models, are illustrated in Figs. 4.1 and 4.2 for beam models of orders 6 and 7, respectively. 

Although the behavior represented by these zero locus diagrams is quite complicated, the general 

trends can be summarized fairly simply. For p near 0 (sensor near the built-in end of the beam), 

the complex zeros depart the two terminating points on the right-hand side of the figures; there is 

also a real zero pair near the origin. As p increases, the smaller complex zero moves towards the 

real axis fairly directly, while the other travels towards the real axis in loops, reaching it towards 

the left-hand side of the figures. The remaining arcs (one in Fig. 4.1; two in Fig. 4.2) are caused 

by real zeros which approach the origin for moderate p values, split into complex quadruples, and 

then become real once more. Finally, as p approaches unity (the collocated case), the zeros 

migrate out along the r ed  axes and then in along the imaginary axes, taking up the interlaced 

collocated values. 

The complex zeros are very sensitive to the choice made for model order; this can be seen from the 

fact that Figs. 4.1 and 4.2 do not overlap to any great extent. The zeros can also be extremely 

sensitive to sensor and/or actuator position. For instance, there are quite large gaps in the vicinity 

of the loops in the figures, despite the fact that they were plotted for a step size in p of 0.002, Le. a 
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sensor position increment of 0.05 m. Fig. 4.3 shows the subplot for n = 6 and p between 0.20 

and 0.21; the sensor position step used is now 5 mm. Superimposed on the figure are the 

corresponding zeros condition numbers as computed by the method described above. The larger- 

magnitude zeros, i.e. the complex zeros and the larger real ones, can be observed to be moving 

quite rapidly in this diagram, and so are extremely sensitive to changes inp. Comparing these 

values with those obtained for a portion of the locus where the zeros are not so mobile (Fig. 4.4; p 

between 0.30 and 0.31) shows nearly a hundredfold change in the zeros condition numbers. The 

new condition number definition has therefore allowed this zeros sensitivity to be quantified 

precisely. 

A further illustration of the sensitivity of the zeros is provided by the zeros sensitivity profile of the 

beam. This is a plot of the average condition number of all the zeros of the structure as a function 

of actuator normalized position p .  Figure 4.5 gives such a plot for the case of a 6-mode beam 

model, and Figure 4.6 gives the corresponding plot for n = 7. It can be Seen that the main feature 

is a system of (n - 1) nearly equally spaced peaks of extremely high amplitude, where one or other 

zeros becomes extremely sensitive to actuator position. This can be explained in terms of the 

condition number analysis given previously, i.e. ill-conditioning arises when the appropriate left 

and right eigenvectors become orthogonal. Alternatively, a wave equation formulation 1341 may 

possible lead to insight into where extreme ill-conditioning arises, and to explain why this occurs 

for nearly equally spaced locations. It should also be noted from the subplots that less severe ill- 

conditioning is also observed for other actuator positions, for instance p = 0.29 for n = 7. The 

wealth of information provided by the condition number approach is clearly seen. 

The high-frequency poles of truncated modal models are well known to be unreliable quantities; 

the high-frequency zeros of collocated structures have comparable sensitivity [SI and convergence 

[5] properties. The conclusion to be drawn from the present work is that the high-frequency zeros 

of non-collocated structures are even less robust. Care should therefore be taken when using the 
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zeros for, for instance, sensor/actuator placement [32][33] to consider only the low-frequency 

converged zeros in the analysis. It should be emphasized that the low-frequency zeros are reliable 

quantities, even in the non-collocated case; their convergence does not possess the Rayleigh-Ritz 

guarantee of monotonicity present for collocated structures, but is nonetheless rapid. 

An interesting question which now arises is: for what values of p ,  as a function of n, do complex 

zeros arise? Table 4.1 summarizes the answer to this question: complex zeros exist forp values 

below p i ,  real and imaginary zero pairs exist for p between p i  and p2; and purely imaginary zeros 

exist for p above p2. .. It can be seen that the near-collocated case always yields only imaginary 

zeros, with the degree of non-collocation permissible decreasing as n increases. This makes sense. 

Real zeros appear for somewhat greater amounts of non-collocation, while even greater sensor/ 

actuator separation leads to the complex zero quadruples. It may initially appear to be paradoxical 

that the range of p values which gives complex zeros increases as n increases. We are, after all, 

approaching the distributed case, which never has complex zeros. However, the explanation is 

that i t  is only the unconverged high-frequency zeros which are actually complex. The effect of 

increasing model order is to give rise to more complicated, broader-ranging behavior for these 

zeros (compare Fig. 4.2 with Fig. 4, l), so leading to complex zeros for a wider range of p values. 

The lower-frequency zeros of these models do indeed converge to the purely real or imaginary 

"true" zeros as n increases, exactly as is to be expected. The= is therefore no contradiction. 

These transmission zero sensitivity results have obvious implications for the closed-loop 

performance that will be achievable as a function of actuator location. It should be expected that 

placing an actuator at a location which yields ill-conditioned zeros will lead to some sort of 

sensitivity in the closed-loop system. This is indeed the case, as can be seen graphically in Fig. 

4.7. This plot shows the family of root loci that occur when output feedback is applied to a 6- 

mode model of the beam and the actuator position is varied from p = 0.20 to p = 0.21. As shown 

in Fig. 4.3, this range is one of extreme zeros sensitivity, with both the complex zero and the one 
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on the real axis changing considerably for very small actuator shifts. This leads to an interesting 

switching phenomenon in the root locus, whereby the root locus abruptly alters its configuration 

for an infinitesimal movement of the actuator. In particular, for low p the closed-loop pole that 

starts from the upper right of the figure asymptotically approaches the complex zero as the gain is 

increased; the smaller pole approaches the zero on the negative real axis. However, asp increases, 

the complex zero descends. Eventually, for an actuator normalized position of about 0.2038, the 

root locus branch from the lower pole becomes attracted to this zero, and the upper branch 

asymptotically approaches the real zero, which now has a magnitude of about 9. The extreme 

sensitivity of the zeros for this structural configuration is therefore directly reflected in severe 

sensitivity of the loci of the corresponding closed-loop poles. 

For high gain, (3.15) predicts that the conditioning of a closed-loop pole will be approximately 

equal to that of the zero that it is asymptotically approaching. In particular, the closed-loop pole 

corresponding to the sensitive complex zero in Fig. 4.7 should itself have a high condition number 

when large gains are applied. Figs. 4.8 and 4.9 illustrate that this is indeed the case. The very 

close correspondence between the behavior of the condition number of the closed-loop pole (Fig. 

4.8) and that of the zero (Fig. 4.9) can clearly be seen. (The difference in magnitudes between the 

two plots is merely a reflection of the details of the algorithms used to compute the two quantities, 

namely Wilkinson's method [ 12][ 131 for the pole and the generalized eigenvalue method of [ 111 

for the zero; it is not significant.) 

For the case of state feedback, the relationship between the sensitivity of the zeros and that of the 

closed-loop poles is not so direct. However, here too there appear to be connections between the 

zeros sensitivity profile shown previously and the condition numbers of the closed-loop poles. To 

illustrate this, the next two figures show the mean condition number of the closed-loop poles 

obtained for n = 6 if these poles are shifted to all have real parts of -0.5 (Fig. 4.10, the low gain 

case) or -2.0 (Fig. 4.11, high gain); the imaginary parts are all kept equal to those of the 
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corresponding open-loop poles. It can be seen that these plots exhibit the same type of localized 

extreme sensitivity as was shown in the zeros sensitivity profiles. A subject for further work is to 

examine why certain of the peaks coincide for both pole and zero plots while others appear to be 

shifted by the application of state feedback. A full understanding of this question is likely to 

provide a considerable degree of insight into practical state feedback control of flexible structures. 
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Figure 4.1. Zero locus for 6-mode beam model. 
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Figure 4.2. Zero locus for 7-mode beam model. 
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Figure 4.3. Zero locus for 6-mode be& model, 0.20 e p < 0.21. 

Figure 4.4. Zero locus for 6-mode beam model, 0.30 e p c 0.31. 
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Figure 4.5. Zeros sensitivity profile for &mode beam model. 

Figure 4.6. Zeros sensitivity profile for 'I-mode beam model. 
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Figure 4.8. Condition number of closed-loop pole versus p. 
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Figure 4.9. Condition number of zero versus p. 
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Figure 4.10. Closed-loop poles mean con$ition number, low gain. 

Figure 4.11. Closed-loop poles mean condition number, high gain. 



5. Non-Interacting Instrument Placement 

The problem to be studied in this portion of the report is that of selecting non-interacting locations 

at which to place a set of instruments on a given flexible structure. Such instruments are typicdly 

slewing telescopes, etc., and so can be regarded as pairs of collocated sensors and actuators; for 

simplicity in what follows, the measured outputs (e.g. instrument pointing angles) will be taken to 

be rates. (The structure may also possess other disturbance sources acting at different locations; 

this will be addressed later in the report.) The FSS is therefore of the form given by (Z.l), with 

ar = (DU and ad = 0. The design problem is thus to select the matrix dju so as to minimize the 

effects of the motion of each instrument on the measurements taken by the others. To do this, it 

will be necessary to first study the properties of the controllability and observability Grammians of 

flexible structures. 

The controllability and observability Grammians, denoted by W, and W,, respectively, of this FSS 

are best described in terms of the state-space model corresponding to the state vector 

x = ( olql 0 . .  qn ~ , q , ) *  For full generality, we shall study the property of these matrix 

quantities for an FSS with either displacement, rate or acceleration sensors. The resulting model 

{A, B, C, D} is then of the form A = bZkdiag(4) and B = (4' BT)', where 

(5.1a) 

bi is the i* row of 0;. The structure of the output equation y = Cx + Du depends on whether 

displacement, rate or acceleration outputs are considered. Of the three cases, the most complicated 

is that of acceleration measurements, as accelerations are not state variables of the system. 

However, equation (la) can be used to put this type of output into standard state form, giving 

Cat = -Cadiag(2cjwi)+ - C,diag(a$)q + C$u. The matrices C = (Cl,*.-,C,) and D that 

describe the output equation are then given as follows for the three possible cases. 

- - 

Displacement outputs: (5.lb) 

Rate outputs: Cj =(cc 0)' D=O; (5.1c) 

Acceleration O U ~ ~ U ~ S :  Cj = (-2[jUjc,i -co~cJ, D = C u i ;  (5.1d) 

= (0 cd, / m j ) ,  D = 0 ; 
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cat , c6 and cd, are the IZh columns of C, , C, and Cd, respectively. 

The Grammians are then given as the solutions of the algebraic Lyapunov equations 

AW, + w , A ~  + B B ~  = O  (5.2) 

and 

A ~ W ,  + W,A + cTc = 0. (5.3) 

The block diagonal form of A can be exploited [16][18][19] to give closed-form solutions for 

these equations. These will now be discussed, first for the comparatively straightforward 

controllability case, &d then for the more involved observability Grammian. 

5.1 Clased-Form Controllability Grammian 

Taking W, first and writing it in terms of its (2 x 2) blocks { Wg}, we have 

4Vj + VjA; + BiB; = 0. -i- - .  

Applying (5.1) then yields, after some algebra, the expression 

(5.4) 

essentiallyra measure of how closely correlated modes i and j are; it will be returned to below. 

Evaluating Wc by this method involves about 7n2 floating-point operations (exploiting the 

symmetry of W,, i.e. W,. = v;); by contrast, the Bartels-Stewart algorithm 1201 for general 

matrices A and B requires order(n3) operations. 

The general expression (5.5) for Wq simplifies considerably for exactly repeated frequencies, 

where we obtain 
R 
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in particular, the diagonal blocks are just q, = - Pii * 
4cioi '2. Simplifications also occur for widely 

separated, lightly-damped modes: in this case, 

It is important to note that (5.6) is inversely proportional to the damping ratios of the structure, 

while (5.7) is independent of damping. Thus, the only blocks of W, which will be of significant 

magnitude for a structure with light damping are those on the diagonal, and those off-diagonal 

blocks that correspond to close frequencies. This reflects the well-known result [21]-[23] that the 

modal model of a flexible structure with widely separated natural frequencies is already 

approximately balanced. However, balancing a flexible structure with near-repeated frequencies is 

a much more challenging problem [ 161, as indeed is determining the controllability properties of its 

close modes [24]. 

i- 

5.2 Closed-Form Observability Grammian 

The observability Grammian W, is given as the solution of the algebraic Lyapunov equation (5.3). 

As was the case for W,, closed-form expressions for the (2 x 2) blocks {&-} making up W, can be 

found by means of an equation analogous to (5.4). The details and complexity of the solutions 

obtained depend strongly on the structure of C;'Cj, which in turn is specified by the type of output 

considered. The expressions that result for the three possibilities (displacements, rates and 

accelerations) are as follows. 
- 

Displacement outputs: 

The general expression in this case is 
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where the scalar dij is as defined in (5.5), and yii = cicd,. As was true for controllability, this 

simplifies considerably in certain special cases. In particular, for exactly repeated frequencies we 

have 

while for widely separated frequencies the expression becomes 

y7 3 WiWj(Wj  yij 2 - w;> . ( ~ j  -+&,ej +o. (5.10) 

Consequently, the observability Grammian of a lightly damped structure with widely separated 

modes and displacement sensors will be diagonally dominant, with diagonal blocks 

{qi = A- ( 2ei )I approximately diagonal and inversely proportional to damping, and 
4&$ 2Ci 1+4c; 

off-diagonal blocks damping-independent. As noted previously, however, this simple observation 

does not hold if the structure possesses repeated, or closely -- spaced, natural frequencies. 

Rate outp UtS; 

Ira this case, CTC has the same form as the matrix BBT ; they are actually identical if sensors and 

actuators are colocated. Furthermore, it can be seen from (5.1) that A and its transpose are related 

by the expression AT =PAP with P=diag{l,-1, ...}, while CP= C for rate measurements. 

Consequently, (5.3) can be rewritten as 

A[PKP]+[PW,P]AT +CTC=O, (5.11) 

which is of the same form as the controllability Lyapunov equation (5.2). Thus, the observability 

Grammian for the case of rate measurements is essentially as given by (5.5), the only differences 
being that p ,  is replaced by yg = tic., and the signs of the off-diagonal blocks are changed. 

Acceleration outputs; 

The general closed-form observability Grammian in this case is 



where yii = c,ca,. For exactly repeated frequencies, this simplifies considerably to 

and to 

(5.13) 

(5.14) 

for the case of widely separated frequencies. Consequently, W, is diagonally dominant for a 

lightly damped structure with acceleration sensors if and only if it possesses no close modes. 

Quantifying the controllability and observability properties of structures when close modes are 

present will now be addressed in detail. 

5.3 Closed- Form Cross-Grammian 

If p 2 m, as is typical of FSS applications, and there exis@ a matrix U with orthonormal columns 

which satisfies C = UBTP, then the system is said to be orthogonally symmetric [251. Flexible 

structures with collocated actuators and rate sensors form a particular class of orthogonally 

symmetric systems: as we then have C =  BT and BTP = BT, we can simply take U =  I. 

Associated with any orthogonally symmetric system is its cross-Grammian Wco, which is defined 

as the solution of the Lyapunov equation 

AW,, + KOA + BUTC = 0. (5.12) 

The usefulness of W,, in balancing applications lies in the fact that it satisfies the relation 

y: = W,c. In €act, as CTC = PBUTUBTP = BBT and BUTC = BUTUBTP = BBT, (5.8) and 

(5.12) can be seen to reduce to the expressions [25] 

- 

0- 

wco = WcP= PW,. (5.13) 

Thus, all three Grammians of an orthogonally symmetric system are given directly from (5.5) with 

suitable changes of sign, noting, of course, that = y.ii for such systems. This property will be 

shown to lead to significant simplifications when balancing models of collocated fIexibIe 

structures. 
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6. Hankel Singular Values of Flexible Structures 

It is always possible [26] to find a state transformation T that takes the model {A,  B, c) to an 

internally balanced state space representation (T-IAT, T ' B ,  CT), i.e. one with equal and diagonal 

controllability and observability Grammians 

= = C diag(ai), (6.1) 

where a, 2 a, 2.2 0. These Hankel singular values (HSVs) occur in approximately equal pairs 

for each flexible mode of a lightly-damped structure. Furthermore, they admit a very simple 

interpretation for any isolated mode: the corresponding HSVs are then just equal to the square root 

of the product of the controllability and observability modal costs 1361 of this mode. The HSVs 

are more complicated, and provide a great deal of useful insight, in the practical case where the 

structure possesses modes with very close natural frequencies, for instance as a result of symmetry 

or repeated substructure elements. This case will be returned to in Sections 6.2 and 6.3 below, 

where the degrees of controllability and observability Qf close structural modes are analyzed. 

These variables quantify how certain of the balanced modes corresponding to a set of near-repeated 

physical modes can approach uncontrollability and/or unobservability as the frequency separation 

decreases to zero. An understanding of this phenomenon is a necessary underpinning to a 

complete analysis of the balanced model reduction procedure as it applies to a practical flexible 

structure with "clusters" of close natural frequencies. 

6. I Balanad Model Reduction 

The Hankel singular values lead to a simple procedure for obtaining a reduced-order approximation 

to the original system: delete those balanced states corresponding to all singular values below some 

specified threshold. The resulting dominant reduced-order model will match the full system with 

an accuracy related to the sizes of those Hankel singular values which were discarded, so giving a 

guideline for selecting an acceptable reduced model order nr; see E261 for further details. It should 

be noted that this model reduction procedure is very straightforward once the balancing 
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transformation T has been found: it merely amounts to discarding trailing rows of the balanced A 

and B and trailing columns of A and C. 

Computation of Tcan be shown to amount to the solution of a standard eigenproblem. This can be 

formulated in various different ways: the one which follows is not the best numerically (see [26] 

for a superior alternative), but it makes the significance of the transformation Tclearest. Inspection 

of (5.3) and (5.4) reveals that the Grammians of the balanced system are related to those of the 

original system model as 

= T'W,TT and = TTW,T; (6.21 

multiplying these matrices then gives 
-- c2 = yly = [T-l~T-T][T'wOT] = T-'[W,w,]T. (6.3) 

Thus, Tis just the matrix of eigenvectors (suitably scaled) of KW,, and the Hankel singular values 

of the system are the corresponding eigenvalues. The'usefulness of the cross-Grammian for 

balancing orthogonally symmetric systems can now also be seen: as Tis the eigenvector matrix of 

= y2 it is also the eigenvector matrix of qo, and we have T'TJ = A with Z2 = A2, so 

A = diag(lt0,). It can be shown DO] that the appropriate scaling for the eigenvectors making up T 

for a collocated flexible structure is such that the relation TTPT = P is satisfied, while the signs of 

the eigenvalues of W, must alternate in the same way as the diagonal elements of P. This can 

certainly be seen to be true for the special case of light damping and widely spaced natural 

frequencies-as (5.13) and (5.7) then imply that the (Ai} occur in approximate pairs (_+p,/4&1~}; 

similarly, the Hankel singular values {oil of a lightly-damped flexible structure always occur in 

approximate pairs. The important point about evaluating T in terms of the cross-Grammian 

directly, rather than using the product WcWo, is that it is a square root method. It therefore 

possesses the improved accuracy propefties typical of these techniques, as exhibited by such 

applications as least squares estimation by QR decomposition rather than the normal equations 

[27], Kalman filtering [28], and the FSS problems of on-orbit structural identification [29] and 

transmission zeros computation [30]. 
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6.2 Degrees of Controllability of Close Modes 

Consider for simplicity a flexible structm with a pair of close modes at nahual fnquencies ai = w 
and oj = 0(1+ E), le1 << 1, with equal damping ratios ci = cj = c. (Bounds similar to the 

expressions to be obtained below can be derived by means of Rayleigh quotients [13] for more 

than two close modes, but at the expense of additional complexity.) 

The degrees of controllability of this pair of close modes will be defined to be the singular values 

of the corresponding (4 x 4) submatrix of Wc , 

where, from (5.5) and (5.6), 

for IEI << 1. These singular values, or principul components [ 141, provide a detailed measure of 

how controllable the highly-interacting modes i andj  are. The analogous quantities for an isolated 

mode k are the two singular values of W,, or just the repeated values &/4ck a,, well-known 

[***3] as the controllability modal cost of this mode. 

The matrix W is positive semi-definite symmetric, so [13] its singular values are precisely equal to 

its eigenvdks. These can in turn be shown [43] to be given as {A  = p/4@}, where &} are the 

four solutions of the characteristic equation - -  
det{p212 -p[& + P j ] I 2  + [ D i J j . I 2  - ~ ~ ~ j ] } = o -  

Furthermore, it can be shown that, for small E ,  

This fact makes (6.6) particularly easy to solve, as the equation reduces approximately to the 

repeated scalar quadratic 

p 2  - p[Dii +pi,] + [Wjj - a] = 0. 
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This in turn implies that the degrees of controllability of modes i and j will occur in two near- 

repeated pairs of values. Each of these pairs corresponds to an uncorrelated internal mode 

(principal vector [14]1) of the system, these modes being made up of linear combinations of the 

original physical vibration modes. 

The degrees of controllability are particularly simple for the single input case. We then have that bi 

and bj are scalars, so = and the roots of (6.8) are just 

flm =+(pii  +&).[1+4G] (6.9a) 

where 

(It is easy to show that x always 

(6.9b) 

(6.10) 

lies in the internal [O, 11, so p- and pmin are indeed real.) 

There is therefore, for small x ,  one internal mode which is strongly controllable and one which is 

weakly controllable, with the limiting case of exactly repeated frequencies producing an 

uncontrollable mode, as expected. Increasing the relative frequency separation E obviously 

increases p-, while decreasing the damping c also increases it: this is even clearer for the special 

case of I E I  << <, where we have x = 4pupii - << 1 and pmin = i(pii  +pj j )x .  A physical E2 

@u +&)' 4C2 

interpretiti~n for the role of damping in controllability can be given by considering the frequency 

response of a flexible structure. Decreasing the damping of two close modes reduces the widths of 

the corresponding amplitude peaks, so decreasing their overlap and increasing the extent to which 

one mode can be excited without exciting the other. This therefore increases controllability. 
\ 

A final point should be noted. This is that no assumption of small c was made in the derivation of 

(6.9): thus, these results apply equally well to close modes of heavily-damped structures. 
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6.3 Degrees of Observability of Close Modes 

A similar approach will now be taken in order to quantify the degrees of observability of two 

equally-damped close structural modes. As in the derivation of the closed-form observability 

Grammians previously, the three types of output measurements, described by (5.1b) - @.Id), will 

be considered in turn. As will be seen, the results obtained for the three cases are very similar- 

Displace ment ournut& 

The degrees of observability of the pair of close modes will be defined to be the singular values of 

the corresponding (4 x 4) submatrix of W, , 

Assuming wj = w , wj = w(1 + E) and Cj = Cj = C, the general expression (5.8) yields 

and 

(6.11) 

(6.12) 

(6.13) 

Note that the diagonal blocks R. and vj are only diagonally dominant for small damping ratios C . 
This differs from what was observed in the controllability problem, where these blocks were 

exactly scalar multiples of the (2 x 2) identity matrix. This difference complicates the following 

analysis somewhat; in particular, it implies that the degree of observability results that will now be 

obtained for displacement measurements are only valid for light damping. 

The eigenvalues {A} of W can be written as A =p/4cw3, where {p} are given [43] from the 

characteristic equation 

After some algebra, this expression can be shown to reduce, for the case of light damping, to the 

approximately repeated scalar quadratic equation (6.8), with {P,} replaced by {yg} in both this 
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equation and (6.7). Thus, the remarks made previously concerning the role of damping ratio and 

frequency separation in the degrees of controllability of close modes apply equally well to 

observability with displacement sensors. 

Rate outputs; 

The duality already noted between observability with rate measurements and controllability implies 

that the degree of controllability results obtained above quantify equally well the degrees of 

observability for this case. The only modification required to equations (6.6) - (6.9) is that of 

replacing the scalars fpc} by { yc). As was the case for the controllability analysis, these resu1i.s 

are valid for all levels of damping. 

Acceleration outputs: 

The submatrix of W, that must be studied in this case has &e €om 

where the individual blocks are given from (5.12) as 

and 
- 
‘ j  (4c2 + E’)  ~ ( 1  + $ E )  + 4c2 

2rgc ( c(2 + 5&) - -~(1+ ; E )  + 4c2 
c(2 + 5 ~ )  

(6.15) 

(6.16) 

(6.17) 

Just as was found for displacement measurements, these diagonal blocks are diagonal only to first 

order in e. Consequently, the degree of observability results obtained for this case will also only 

be valid for lightly damped modes. 

The eigenvalues of W can be written as {A =p-m/4c}, where {pu) are again given from a 

characteristic equation of the form (6.14). For light damping, this determinant can once again be 

shown to reduce to the approximately repeated scalar quadratic equation (6.8), with {P,} replaced 
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by { ry} throughout. Thus, the roles of damping ratio and frequency separation in the degrees of 

controllability of close modes carry over unchanged to observability with acceleration sensors. It 

can therefore be seen that the only significant difference between the degrees of observability 

obtained for the three possible types of sensors lies in the frequency dependence of the scale factor 

l/4Cm3 (displacements), l/4Cm (rates) or m/4c (accelerations) that must be applied to them. 
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7. Optimal Instrument Perturbations 

The background provided above allows us to derive two computationally efficient techniques for 

deciding how to move the instruments so as to minimize their disturbance interactions. In both 

cases, the basic procedure is the same: each instrument in turn is moved through some small 

displacement, in a direction chosen so as to reduce the observability of the overall system as much 

as possible. This procedure is repeated until convergence to an acceptable set of instrument 

locations is obtained. Note that the procedures will be shown to be applicable equally well to 

discrete structures (e.g. trusses) or continuous ones (e.g. plates and beams). The implementational 

details of course differ for the two types of structure, as will be discussed in Section 8. 

The two approaches to be described differ only in the definition of the observability measure that is 

to be minimized. In the fmt case, this is the l a r g ~  Hankel singular value of the structure, while in 

the second it is the sum of the Hankel singular values. q s  choice in turn alters the expression for 

the optimal direction in which each instrument is to be moved at each step. The two methods will 

now both be described in turn. 

7.1 Minimiiing Largest Hankel Singular Value 

Consider the case of shifting the kth instrument on the structure, all other instruments remaining 

fmed for now. This alters only column k of the influence matrix @:, i.e. the k* entries of each of 

the row vectors bi in (5.1) etc. The change in this column can be used to reduce the largest Hankel 

singular value of the system as much as possible by examining the resulting first-order perturbation 

of this quantity. As the system considered is orthogonally symmetric, its Hankel singular values 

are just the eigenvalues of the cross-Grammian W,. Thus, the eigenvalue perturbation results of 

Stewart [13] can be applied directly to this problem. 

Let h be the largest Hankel singular value of the system, Le. the largest eigenvalue of the cross- 

Grammian. It therefore satisfies the left and right eigenequations 
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and 

yHwm = AyH, (7.2) 

where it should be noted that the matrix W, is not in general symmetric (see (5.13)). If x and y 

are normalized so as to satisfy lIxl)a = 1 and l]yi, = 1, then the change in this eigenvalue in response 

to a change Wc0 in the cross-Grammian is, to first order, 

This eigenvalue perturbation result is general; however, the specifics of the problem considered 

here can now be exploited to simplify it. The two points to be made are as follows: 

Svmmetric formulation for - Y H m m X .  

Combining equations (5.13) and (7.2), we have that . 

y H q p  = ayH. (7.4) 

pw,Y = ay, (7.5) 

w,,[Pyl= W y I .  (7.6) 

Now, the controllability Grammian is symmetric, so this can be transposed to give 

which implies, as PP = I, that PWcPPy = Ay . After pre-multiplying by P this yields 

Comparing this with (7.1) and noting that x and y are both normalized, we clearly have that 

x = Q ,  - 
so the desired symmetric expression is simply 

(7.7) 

where SW, is the perturbation of the symmetric controllability Grammian resulting from the shift in 

instrument location. It should be borne in mind, of course, that y is a left eigenvector of the 

unsymmetric cross-Grammian W,, not of W, . 
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_ClOsed-form - S W C .  

As already noted, shifting the k& instrument location alters only column k of the matrix a:. The 

resulting effect on the controllability Grammian is thus to alter the scalars pc in the closed-form 

expressions (5.5); all other quantities remain unchanged. In detail, the change in the (2 x 2) (i,j)* 

block of Wc can be written as 

Spg = (bi +(0 6b, O)}{bT + 

A 

lily. = Spii * pj, 
where Rj = qj / P i j ,  with notation as in (5.5). Furthermore, 

Sbjk } -bib; 

(7.9) 

(7.10) 

Sb, bjk + 8bjk * b,, 

neglecting second-order terms. 

Combining equations (7.8) and (7.10), the eigenvalue perturbation expression (7.3) can finally be 

rewritten as 
(7.11) 

The positive scalar multiplier l/ly"Pyl is not important when trying to find optimal instrument shift 

directions, - and so will be omitted here. The remaining term can be expanded as - 

where the 2-vectors { y , }  are defined as 

(7.12) 

Y =  [ '1. 
Y" 

(7.13) 
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Defining the constant scalars (aq} to be 
H A  

aij = Yi y 3 Y j ,  

we can therefore write (7.12) as 

i j  

(7.14) 

(7.15) 
making use of (7.10). Defining the matrix a = (aG), this can be expressed in the simple vector- 

matrix form 

(7.16) 

where bcol-k is the ka Column of a:. Now, the design fiioblern is to shift instrument k so as to 

reduce the maximal Hankel singular value h as much as possible. The last equation allows us to 

achieve this, as the quantity 

PT = b L r - k [ A  AT] (7.17) 

is a vector which is entirely in terms of known quantities. Thus, if the instrument perturbation is 

chosen to be as nearly as possible anti-parallel to this known vector, Le. of the form 

%ol-k = -PP (7.18) 

for some p6sitive scalar p, then the resulting eigenvalue perturbation will be as large and negative 

as possible for all instrument perturbations of this magnitude. Thus, h will be reduced by the 

maximum amount possible. 

7.2 Minimizing Sum of Hankel Singular Values 

fn this case, the observability measure to be minimized is not the largest Hankel singular value of 

the system, but rather the sum of the Hankel singular values. This quantity is just the trace of the 

controllability Grammian W,; by the closed-form expression (5.7) it can be written as 
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(7.19) 

Again, shifting instruments only affects the scalars wv}, altering them to first-order by 

perturbations given by (7.10). Here, we are only concerned with the diagonal terms Cpii};  a shift 

of the kh instrument causes changes of the form 

Spii 2Sb2 - bik 

in these. The resulting change in the trace of W, is therefore 

where 

(7.20) 

(7.2 1 )  

(7.22) 

(7.23) 

and mb,[-k is as before. Now, the vector q is given purely in terms of known quantities, as was 

the vector p in the previous analysis. Furthermore, it plays a very similar role to that vector; if the 

k& instrument shift is chosen as nearly as possible anti-parallel to q, i.e. satisfying 

&c;-k = -pq (7.24) 

for some positive scalar p, then this will reduce the sum of the Hankel singular values of the 

system as much as possible. The differences between the two methods discussed therefore lie only 

in the details of the construction of the vector used to determine the optimum instrument shift 

direction. The vector q is certainly simpler and faster to compute than is p, as it does not involve 

fmding an eigenvector of KO. In addition, the two methods often produce very similar results in 

practice. However, it has also been observed that the algorithm based on q can, on occasion, 

converge to an undesirable local minimum; details will be given in the next section. It therefore 
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appears advisable in practice to carry out the additional calculations quired for the p method, in 

order to avoid possible convergence problems. 
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8. Implementational Details 

Various practical details should be borne in mind when implementing the two instrument placement 

methods just derived. If sufficient care is taken with these points, the efficiency of the resulting 

algorithms, together with their convergence properties and generality of application, can be 

improved considerably. 

Considering computational efficiency first, there are several ways in which the operation counts 

required for the maximal Hankel singular value technique can be minimized. (The method based 

on the sum of the HSVs is already extremely efficient, and cannot really be improved further.) The 

main point to note is that we only need the eigenvector y corresponding to the maximal eigenvalue, 

A ,  of Wco. It is therefore certainly not necessary to evaluate the entire eigenstructure of the cross- 

Grammian, only to discard the bulk of it. Instead, a method closely related to the power method 

1121 can be used to iteratively compute y and A , at very-low computational cost. The standard 

power method cannot be used itself, as it requires that the maximal eigenvalue be considerably 

greater than the next largest. However, Wco always has two approximately equal maximal 

eigenvalues, kIA1, for a lightly-damped structure; thus, the power method would not converge. 

Instead, the orthogonal iteration [27j technique can be used to iteratively find these two eigenvalues 

and their associated eigenvectors. The procedure starts by selecting a (2n x 2) matrix as an 

initial approximation to a basis for the desired eigenspace. The iteration then proceeds to generate a 

sequence of matrices {a} as follows: 
i = 1,2,.**: 

zi = Q-,Wc0; 

Q&=z;:, (8.1) 

T T  

the QR decomposition [27] of Zj. Convergence of the { } to the required eigenspace is generally 

rapid if Q, is chosen suitably. Fortunately, in the present application there are two points which 

make this choice rather straightfozward. Firstly, the special structure of Wco for a lightly-damped 

flexible structure allows to be determined by inspection whenever the natural frequencies are 

widely spaced. Secondly, when cycling through the instrument placement algorithm, the 

43 



converged from the previous cycle will generally be a very good choice for for the current 

one. In fact, it may be possible to use the previous eigenmatrix directly, with no manipulation, 

over several cycles and still obtain sufficient accuracy for our purposes. 

Two points concerning the matrix A can also be noted to speed up computation as much as 

possible. Firstly, if the vector y is real (as has been observed to be the case in practice for lightly- 

damped flexible structures, but has not been proven, as the cross-Grammian is not symmetric), 

then will always be symmetric. It is therefore not strictly necessary to introduce its transpose 

into (7.16) and (7.17). Secondly, if all instruments are to be moved at each cycle through the 

algorithm, it is only actually necessary to compute A once per cycle; it can then be used unchanged 

to calculate the optimal directions of motion for each of the instruments simultaneously. In fact, 

(7.17) and (7.18) taken for all values of k together give the matrix equation 

6B = -[A + A T p 3  *- (8.2) 

for some positive diagonal matrix M. The optimal shift for instrument k is then such that the 

change in its influence vector is as nearly as possible parallel to column k of the matrix 623. 

A further practical point that must be borne in mind when implementing either of the instrument 

placement algorithms is that the optimal &,-, will not, in general, correspond to a physically 

realizable instrument shift. For instance, an instrument at an interior point on a plate can be moved 
- 

in any desired direction in the (x,y) plane of the plate, but not out-of-plane. Let the vectors 

abCul-,/dx and dbcuI - ,/$y denote the partial derivatives of the instrument influence vector for 

motion along the two in-plane axes, and define the matrix x = (abco1 - k/dx abcul-,/+). Then 

the physically realizable instrument shift that is closest to the desired optimal movement in a least 

squares sense is given by the orthogonal projection equation 
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For a discrete truss-like structure, the only perturbation possible for an instrument which is 

currently positioned at a particular node is to shift it to one of the few adjacent nodes. However, it 

is still possible to use an equation analogous to (8.3) to determine which feasible shift is closest to 

the desired optimal aCul - in a least squares sense. One practical detail here is as follows. It has 

been found in numerous simulation studies that superior results are obtained when the shift 

direction chosen is that which has the smallest angle to &cor k ,  rather than that which has the - 

largest projected component along it. In other words, the magnitudes of the feasible instrument 

influence vector shifts should not be considered when selecting the direction in which to move. 

In the placement algorithms developed so far, the only disturbances acting on each instrument were 

the motions resulting from the slewing of the other instruments. However, there may in practice 

be other disturbance sources present on the structure as well. Fortunately, the basic algorithms as 

derived above can be extended, at the cost of some additional complexity, to deal with this 

generalized problem. 

In particular, consider a flexible structure with a set of disturbance sources at known positions on 

it. We wish to place a set of instruments on the structure so as to minimize the total effect of 

disturbances and instrument cross-coupling on the pointing accuracy of each instrument. The main 

additional complexity that now arises is the fact that the system is no longer collocated; thus, the 

cross-Grm-mian cannot be used to find the Hankel singular values. Instead, these values must be 

computed as the square roots of the eigenvalues of W,Wu, where the Grammians W, and Wo can 

still be obtained in closed-form as before. 

In outline, the placement procedure based on the maximal HSV is now as follows; the method 

based on the sum of the HSVs can be generalized in analogous fashion. Let A be the maximal 

Hankel singular value of the system. Its square then satisfies the left and right eigenequations 

W , W , ~  = (8.4) 
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and 
H 2  Y ~ W , W , = Y  a , 

where x and y are assumed to be normalized. The effect of a small change in the product of the 

Grammians, for instance as a result of a small shift in an instrument position, is then to perturb this 

squared HSV to 

;23L = A2 4- y%(W,W,)x, (8.6) 

by the standard frrst-order eigenvalue result. But we also have, to first order, 

S(W,W,) = wcmo +mew,. (8.7) 

Furthermore, if the perturbation in the Grammians is a result of shifting the ka instrument, then the 

changes in these matrices will actually be a result of altering the scalar multipliers cP,i} and 

{ czci etc. in the closed-form expressions (5.5) and (5.11). The changes in these quantities 

can be computed quite simply using equation (7. lo). Thus, the perturbation in the maximal HSV 

that results from an instrument shift on a non-collocated squcture can be readily computed. 

Finally, both of the instrument placement techniques described above can easily be applied to 

structures with varying modal parameters. This is a consequence of the closed-form nature of the 

Hankel singular value expressions which form the basis of these algorithms. For, if the natural 

frequencies, damping ratios and/or mode shapes of the structure in question change as a result of 

alterations to its structural elements, these changes directly influence the closed-loop Grammians 

(5.5) and (5.11) and the influence matrix 0;. The changes in the optimal shift directions p and q 

that result from these changes are therefore easily characterized. The new instrument placement 

algorithms thus appear to be natural components of an integrated controls-structure design 

approach, where both control system parameters (e.g. positions of instruments) and structural 

parameters (e.g. stiffnesses of truss members) are varied in such a way as to maximize closed-loop 

performance while minimizing overall system mass. This type of approach is very promising 

when compared to the classical approach where structure and control system are designed in 

sequence. 
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9. Instrument Placement Results 

The instrument placement algorithms derived and analyzed in the last four sections will now be 

illustrated by application to two flexible structures. The first, a uniform rectangular plate, is typical 

of structures modeled as continua, where instruments can be placed at any desired position. The 

second example, the Air Force Phillips Laboratory Advanced Space Structures Technology 

Research Eqeriment (ASTREX) testbed, is representative of truss-like discrete structures, where 

instruments can only be positioned at the node points. Each of these systems serves to illustrate 

different aspects of the HSV-based placement algorithms. 

9. I Uniform Plate Model 

We shall now consider a uniform vertical steel plate model which is based on the DFVLR 

laboratory test article described in 071. This plate has horizontal length 1.50 m, vertical length 

2.75 m, thickness 2 mm, and isotropic material properti& E = 2.0 x 1011 N/m2, p = 8.0 x 103 

kg/m3 and v = 0.3. In this study, a damping ratio of 1% is chosen for each mode. For simplicity, 

the plate is assumed to be simply-supported along all four edges, leading [9] to a lowest natural 

frequency of 2.741 Hz. This system has seven modes below 15 Hz and eleven below 22.5 Hz, 

including several quite closely-spaced ones; these two truncated modal models will be the ones 

used for the simulation results presented here. Three instruments are positioned at (0.3, 0.6), 

(0.6, 1.5) and (0.8, 1.2) m from the bottom left corner of the plate, and then iteratively moved, in 

steps of 0.0% m, using either the method which seeks to minimize the largest HSV (based on p) or 

that which minimizes the summed HSVs (based on q). This will provide a clear illustration of the 

comparative performance of the two algorithms. (Many other cases are also reported in [38]; the 

interested reader is referred there for further details.) 

The simply-supported rectangular plate has very simple mode shapes; their projections along either 

the x or y-axis are simply sinusoidal, with periods so as to give nodes at the edge supports. This 

has two implications. Firstly, the mode shape partial derivatives with respect to x and y ,  needed to 
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set up the matrix X in (8.1), are simple to calculate in closed-form. Secondly, the optimally non- 

interacting locations for a set of instruments on the plate are clearly along the edge nodal lines. 

This provides a means of testing the performance of the instrument placement algorithms: if either 

of the techniques does not position all instruments on the edges, it is clearly not achieving a global 

optimum. 

As previously claimed, both of the HSV-based placement algorithms do indeed often produce very 

similar results. This is illustrated by Figures 9.1 and 9.2, which show the tracks followed by the 

three instruments for  an 1 1-mode model as they are iteratively repositioned using the p method 

(Figure 9.1) and that based on q (Figure 9.2). The similarity between the instrument movements 

generated by the two algorithms in this case is clearly visible, and is confirmed by a comparison of 

the plots of decreasing maximal HSV and summed HSVs that the two methods produce. These are 

given as Figures 9.3 and 9.4. 

It might therefore be concluded that the q method, being simpler and apparently producing results 

comparable to those obtained using p, is the preferred implementation in practice. However, 

examples are easy to construct where the p technique converges correctly to the edges of the plate, 

and yet the q method does not. For instance, Figures 9.5 and 9.6 give the results obtained for the 

same initial instrument locations as before, but with a plate model now truncated at seven modes 

rather thaneleven. The method based on minimizing the summed HSVs now causes two of the 

instruments to move towards the center of the plate rather than the edges. The consequences for 

the Hankel singular values is shown in Figures 9.7 and 9.8: the q method causes virtually no 

change at all to the maximal HSV, and only a modest decrease in the summed HSVs. The p 

method, by contrast, reduces these observability quantities essentially to zero as before. The exact 

reason for the failure of the q algorithm to correctly position the instruments in this case is not clear 

at present, although it appears to be some form of local minimum property. The practical 
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implication is clear though: it is that the modest increase in computation required by the p method 

over that based on q is well worthwhile for the additional robustness it provides. 

9.2 ASTREX Structure 

The instrument placement techniques will now be applied to the ASTREX truncated modal model 

described in [39][40]. ASTREX consists of two major sections: a pivoting test article (Figure 

9.9), and a vertical pedestal that supports the test article through an air-bearing system. The air 

bearing is leveled such that the test article points downwards from the horizontal by about 30". 

The test article is designed to represent a space-based reflector system. The front section is 

attached to the large primary by a tripod support, and represents a secondary mirror; the rear 

section represents a tertiary reflector; it houses electronics and balances the secondary. 

The modal model used here has 22 flexible modes, rangi-ng in frequency from 3.71 Hz to 48.57 

Hz, with an assumed damping ratio of 0.1% for all modes. The NASTRAN finite-element model 

used to generate the model possesses 375 node points, some of which are labeled in Figure 9.9. 

36 nodes lie on the main reflector front face (Figure 9.10); for generality, all of these points will be 

considered to be candidate positions for instruments in the results that follow. 

All of the results reported here for ASTREX were obtained using the instrument placement 

algorithm which is based on minimizing the largest Hankel singular value of the system. This is 

due to the difficulties sometimes observed when applying the summed-HSV technique to the plate 

model. In all cases, two instruments are initially positioned at random on the front face of the 

primary. The placement algorithm then iteratively moves the instruments, one step at a time, until 

the maximal HSV is reduced as much as possible. The differences between the various cases 

studied lie in the orientation of the two instrument sensing axes (either both along the x-axis, one 

along x and one along y ,  or both along z, i-e. normal to the plane of the primary), and in whether 
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or not there are any additional fixed disturbance sources present. Also, these disturbances were 

considered to act along either the x or the z axes. 

The results obtained can be summarized as follows. Typically, an order of magnitude reduction 

was achieved in both the maximal Hankel singular value (directly) and the summed HSVs 

(indirectly) by repositioning instruments. For instance, the case of two x-axis instruments initially 

placed at nodes 68 and 86, Le. along the outer edge of the primary truss, and no disturbance 

sources gives an initial maximal HSV of 3 . 5 3 4 ~ 1 0 ~  and an HSV sum of 3.659 x ~ O - ~ .  After 

application of the placement algorithm, the instruments are positioned at nodes 13 1 and 164, along 

the inner edge of the primary, and the corresponding maximal and summed HSVs are 4.872 x 10” 

and 5.585 x lo4, respectively. Similarly, an x-axis instrument at node 90 and a y-axis one at node 

80 were shifted by the algorithm to lie at nodes 108 and 164, respectively. The maximal HSV was 

correspondingly reduced from 6.690 x to 6.8 11 x lo$, while the sum of the Hankel singular 

values dropped from 3.713 x This reduction of nearly two orders of 

magnitude was one of the largest observed for any of the cases run. 

to 1.0173 x 

Finally, the close connection between the frequency response of a system and its Hankel singular 

values implies that the new instrument placement technique should significantly reduce the peak 

magnitudes observed in cross-instrument responses. This is illustrated by Figure 9.11, which 

gives a typical ASTREX instrument Bode magnitude plot before (dashed) and after (solid) 

optimally repositioning the instruments. It can be seen that a reduction of about 30 dB has been 

achieved: given that this was obtained by the purely passive technique of shifting instrument 

locations, rather than by active feedback, it is really quite impressive. 
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10. Decentralized Control and Closed-Loop Grammians 

The controllability and obsemability Grammians have been shown in the earlier portions of this 

report to be extremely usefbl quantities in the control of FSS. However, one limitation that they 

do possess is that they are inherently open-loop parameters. In particular, if control is to be 

implemented in a decentralized form, e.g. by means of a set of independent sensor/actuator pairs, 

the standard Grammians do not reflect the input/output mappings that exist between sensors and 

actuators. In order to facilitate the analysis of decentralized controllers for FSS, it is necessary 

instead to study the closed-loop Crammians that were introduced in [46]. This section defines 

these matrices, describs their properties, and shows how they can be applied to model reduction 

and sequential loop closing controller design problems for FSS with decentralized sensors and 

actuators. 

3 

In FSS control, model reduction is always necessary because of the limited capacity of on board 

computers. The reduction procedure can be fairly simple or rather complicated, depending on 

whether the control system is correlated or not. Simply speaking, two modes are uncorrelated, if 

there is nG coupling term for these two modes in the controlability and observability grammians, 

and correlated otherwise. A more detailed way to measure how much two modes are correlated is 

by the ratio of the norm of the off-diagonal 2 x 2 blocks, to the square root of the product of the 

norms of the diagonal blocks. One simple way of this reduction is modal truncation, which simply 

discards higher order modes, since those modes are usually hard to excite and less accurate. A 

more complicated technique is so called balancing method, which transforms the system into a 
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coordinate where the modes are uncorrelated, then discards the modes with low modal cost [14]. 

It has been shown that for structures with light damping and widely spaced natural frequencies, 

the modal representation is almost identical to that of the balanced model [ 19][22][23]. 

However, for structures with repeated fkequencies, especially, for FSS, where closely spaced 

modes are typical, this is not true. Ref. 16 shows that for these structures, balanced reduction 

generally gives far better results than simple modal reduction. Therefore, balancing should be 

carried out before model reduction of FSS control systems. 

Here, it will be proved using closed-loop grammian, that an inner rate feedback loop, if designed 

appropriately, can greatly reduce the correlation of twodosed modes. Therefore, this inner loop 

can balance FSS control system, and model reduction may be carried out directly sometimes 

without doing coordinate transformation. This result will be use@ in FSS decentrrriized control 

design. It is especially useful in the design of high-authorityllow-authority control (HACLAC), 

which is a special case of decentralized control. 

Numerical examples will be given. 

IO. I Closed-Loop Controllabiliv Grammian 

Suppose output feedback u = -Ky is applied to the system. The controllability g r a m n h  then 

becomes W, + AV, , where 

(A-BKC)(Wc+AWc)+(K+AJ;Y,)(A-BKC)T +BBT = O  (10.1) 
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If relatively small gains are used, i.e. llBKq1 e< 11A11, then, second-order terms of the form 

BKCAK can be neglected in (10.1). This, and the Lyapunov equation A K  + K A T  +BBT = 0 

lead to the first-order approximation 

, 

AAK+AW,+X=O (10.2) 

where 

X = -BKCW, - (BKCW,.* 

is symmetric. 

For FSS, A is block diagonal, so fkom (10.2) and (10.3) we have 

$Awe, + A K , A ;  =-TI 

where 

4. =q( -2ri 1 0  -3 
The zero term in Xu is resulted fkom the alternating zero raws in B. 

Let 

AKV=( P 4  ) 
r s  

(10.3) 

(10.4) 

(10.5) 

(10.6) 

(10.7) 

Then it can'be shown, after some manipulation, that 
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awi(w; - w j ) - 2 w i ( ~ i 0 i  +cjwj)(-ywj + P o j )  
r =  

(w; -w;)2 +4wiwj(5;iwj +5;jwi)(5;iwi +5;jwj)  

Therefore, simplifjmg, we have 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

(10.12) 

2awiwj 0 
*<iaj+cjai( 0 J) 

where dg 5 4 w p j  (ejoi +<pi) (ciai +c jwj )+(w:  -wi")2is the same denominator term that 

appeared in the closed-form expression for the open-loop G r d a n  of FSS. From this 

denominator, and the fact that FSS usually have very small damping, we can see fiom (10.12) that 

the off-diagonal blocks are much smaller than the diagonal blocks. The diagonal blocks of AWc 

simpl@ considerably: they are just: 

(10.13) 
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Therefore, for widely spaced lightly damped structures, AK is almost diagonal. Since in this kind 

of structures the open-loop Grammians are not correlated, we can know that when gains are 

small, the closed-loop Grammian will keep uncorrelated. On the contrary, for closed modes, there 

open-loop Grammian are correlated, as show in previous sections. When a control loop is applied, 

the G r d a n  perturbation is also not diagonal. Therefore, it is not clear how the resulting 

closed-loop is correlated. 

In the next sub-section, it will be proveG that the correlation between these close modes can be 

decreased under some conditions and increased under other conditions. 
--: 

Consider a multi-inputlmulti-output (MIMO) control system with open-loop controllability We, 

when applied an inner single inputlsingle output (SISO) collocated rate feedback control loop, as 

shown in Fig. 10.1, will have 

X= -k(b,b,TK +(b,bJTW,)T) 
- 

where b, is the inner loop n-vector. Considering (10.5), this gives 

(10.14) 

(10.15) 

For lightly damped widely-spaced modes, l l ~ j l l  << IIWdll, and Wd is diagonal, p and y are 

almost zero. However, for FSS, which have closed modes, it is not necessarily true. 
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Fig.16.1 Block diagram of inner and outer loops. 

10.2 Feedback Correlation Redaction for Close M&s 

When model reduction is necessary, we hope that the correlation of modes are small, so that the 

model reduction can be carried out directly by modal truncation. Otherwise, coordinate 

transformations must be perfomed before model reduction. As mentioned in the last sub-section, 

for widely spaced, lightly damped modes, the correlation is always small, both in the open closed 

loop systems. But for close modes, the correlation is significant for open-loop systems, and not 

clear for closed loop systems. In this section, it will be shown that the correlation of close modes 

in closed loop system can be either decreases or increased. Conditions to reduce correlation of 

close modes will be given. 
- - 

Theorem: If an inner rate feedback loop is applied to a control system as shown in Fig. 10.1 , the 

correlation of two closed modes will decrease whenfly and Pris = b,,b, have same sign, and 

increase otherwise. 

The proof is carried out for three different cases. The first case is when the damping ratios are 

higher order small quantities than the difference of natural fiequencies; the second case is when 
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the difference of natural fiequencies is a higher order small quantity than the damping ratios; and 

the third is when the damping ratios and difference of natural fiequencies are small quantities of 

the same order. 

When damping ratio Ci = 6,- + 0 : 

From (5.9, when Ci, c, 3 0 and ai, mi are separated 

When oi = m i ,  

In particular, the diagonal blocks are 

Using (10.16), (10.18) and (10.15) gives: 
c 

P = r  

(1Q. 16) 

(10.17) 

(10.18) 

(10.19) 

(10.20) 

Substitute (10.20) into (10.12) and considering the small damping and the fact the fiequencies we 

consider are close 
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(10.21) 

From (10.16)7 it can be found that the relative decrease of the norm of the (i, j) off-diagonal 

block is 

(10.22) 

fiom which we can see that when plyand have the same sign, the off-diagonal terms will 

always be reduced; otherwise, they will increase. 

The relative decrease of the diagonal blocks can be found from (10.18) and (10.12) as 

(10.23) 

From (10.22) and (10.23), it can be seen that the condition for the decrease of the off-diagonal 

blocks to be faster than that of the diagonal blocks is 
- - 

which by the Triangle Inequality, is always satisfied. 

( 1 0 -24) 
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From (10.17) (10.18) and (10.15), 

P = y = O  

The relative decrease of the off-diagonal blocks are 

Those of the diagonal blocks are , itom (10.10) and (10.23) 

(10.25) 

(10.26) 

(10.27) 

(10.28) 

For off-diagonal blocks to decrease faster than the diagonal blocks requires 

Rearranging gives 

(10.29) 

condition required in the previous case, (10.29) is always satisfied. 

When damping ratio and difference of natural frequencies are of same order: 
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Let ui =a, w j  =(l+&)u, Ti =Cj =C, theqfiom(5.5) 

where Dy = 4w4(.sZ +4c2) 

From (10.18), (10.30) and (10.14) 

(10.31) then becomes 

AWw, =-( 203 2a4 ") 
Dy -a& 2ac 

The relative decrease of the off-diagonal blocks is, then, 

- k2w3& PgPIji +P#Plij 
pii - -F* P ,  - 

Those ofthe diagonal blocks are, from (10.18) and (10.12) 

k pi = - 4 a 3 4  
Dy 

For the off-diagonal blocks to decrease faster than the diagonal blocks requires 

(10.30) 

(10.31) 

(1 0.3 2) 

(10.33) 

(10.34) 

(10.35) 

(10.36) 

Rearranging gives the same result as (10.24), hence the same conclusion. 

66 



IO. 3 Application To FSS Decentraked Control Design 

Application to yenera1 FSS decentralized control system design 

A FSS decentralized control system consists of several indepenwnt loops, some of which are 

SISO, some -0. The design of these loops can be conducted, one by one, independently. 

One problem, though, is that when each control loop is applied, the resulting closed-loop will 

have different controflability and observabiiity fiom that before the loop is applied. Although the 

perturbation incurred by each loop may be small, when several loops are applied, the perturbation 

can be significant. 

However, with the formulas derived in Section 10.1, the controllability and observability of 

closed-loop can be found when each loop is applied. 

Another changing property, when each loop is applied, is the correlation of different modes. As 

can be see$ from SectionlO.2, the correlation of closed modes decreases under certain conditions 

and increases sometimes. This result will be usehl in FSS decentralized control design. 

FSS often have close modes, between which there are significant correlation. Therefore, the 

model reduction can not be done directly. However, if the result of 10.3 is adopted in design, the 

correlation of closed modes can be reduced, and model reduction can often be carried out 

directly. 
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The procedure is: 

1. Group one of the MJMO loop with several SISO loops, which satisfjr the condition for 

decreasing the correlation of the closed modes. 

2. Then if the gains are appropriate, the correlation could be neglected and model reduction can 

be done by simply discarding those modes with small modal cost. 

3. M e r  the design of this group of loops, form another group in the same way and cany out 

design. 

Application to high-authorityAow-authority control (HACLAC) 

One example of decentralized control is HACLAC [19]. The low damping of FSS makes control 

design much more difficult. The difsculty lies in the fact that once the modes are excited, it takes 

considerable time to go to rest, and since the open loop poles are very close to imaginary axis, it 

is easily destabilized by spillover of unmodelled modes. One way to overcome this is using 

HACLAC. In this approach, an inner loop (LAC) is installed to augment the damping then 

design theputer loop (HAC) for desired performance. 

From the conclusions of previous sections, this inner loop not only can increases the damping, but 

atso can reduces the correlation of controllability and observability grammians. Therefore, if the 

inner loop is appropriately designed, the resulting system will be balanced and of relatively high 

damping. The model reduction can then be carried out directly, also the HAC design. 
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The design can be carried out following this procedure: 

1. Find the close fiequencies which needs to be balanced. 

2. Calculatep, for both B and C matrix. 

3. Find the positions where b,b, have same sign witha, for both B and C. 

has values as large as possible. I IPn I I  118, I I 
IIPgIl' 

4. For best effect, find the position where 

5. Give a gain k and calculate the correlation. When the correlation is not small enough, 

increase k, until it is small enough. 

6. Find the reduced order modes by eliminating the modes with small cost. 

7. Design the HAC for the reduced model. 

10.4 Numerical Examples 

A uniform cantilever beam model with the natural frequency of mode 4 artificially shifted to make 

modes 3 4 close is used to calculate the correlation of W, and W, for different cases. We keep 

modes 1 2 unchanged and observe the correlation of modes 3 4. An HACLAC is used to control 

the systempith HAC two input two output. 

Figure 10.2 shows the mode shapes of the first four modes. 

Figure 10.3 shows the correlation for different k. The two actuators of HAC are installed at L/2 

and L fiom the fixes end, and two sensors at 0.1L and 0.9753;. If the LAC loop is placed at 3L/4, 

we can find that p34 < 0, f1134 < 0. It can be seen that the correlation is drastically reduced. 
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Figure 10.4 shows the correlation for W, , when the sensor are at 0.lL and 0.975L. 

Ifthe outer loop is a collocated loop with sensors and actuator at L/2 and L, the correlation can 

also be SignitiCantly reduced. Figure 10.5 shows the correlation for W, , when the sensors are at 

U2 and L, which is a collocated case. 

However, a poor choice of inner loop may even increase the Correlation. Figure 10.6 shows with 

the same outer loop, and the inner loop installed at L/4, which makes p34 > 0 .It can be seen that 

the correlation is not decreased but rather increased. TQ avoid this, we need to make sure that 

PM andPIW have same sign. 

One important property of this method is that the inner loop will never increase the low 

correlation between widely separated modes. Figure 10.7 shows that with these feedback, the 

correlation between widely spaced modes 1 and 2 are indeed changed very little. 
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Fig10.2 Mode shapes 

Fig 10.3 Controllability correlation for modes 3 and 4 
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Fig 10.4 Observability correlation for modes 3 and 4 
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10.5 Observability correlation for modes 3 and 4 



Fig 10.6 Controllability correlation for modes 3 and 4 
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Fig 10.7 Controllability correlation for modes 1 and 2 



11. Conclusions 

The first part of this report analyzed the extreme sensitivity to sensor and actuator position that can 

occur for the transmission zeros of non-collocated flexible structures. This sensitivity was 

quantified directly in terms of a pair of new zeros condition numbers that were defined here. These 

variables help to explain the fundamental differences that arise in zeros sensitivity in the collocated 

and non-collocated cases. They also provide insight into the effects of small actuator shifts on the 

resulting closed-loop poles, and guidance as to how to shift non-collocated sensors and actuators 

so as to make the resulting zeros as damped as possible. 

The report then described two computationally efficient techniques for the related problem of 

positioning instruments on a flexible structure so as to minimize the disturbance effects of the 

slewing of one instrument on the pointing performance of the others. Both approaches were based 

on perturbation methods involving the closed-form Hankel singular values of flexible structures. 

Iterating over all instruments led to a final set of highly non-interacting instrument locations. These 

methods were illustrated by application to a uniform simply-supported plate, as an example of a 

continuous structure, as well as to the discrete ASTREX truss structure. Both these examples 

demonstrated the improvement in performance that is achievable by the purely passive technique of 

repositioning instruments. 

Finally, i twas pointed out that the control of flexible space structures (FSS) must often be 

performed by means of a set of decentralized, Le. independent, sensors and actuators. This 

constraint on the structure of the feedback gain matrix implies that decentralized controllers will 

generally possess lower performance than that of a centralized controller. For instance, there may 

exist closed-loop poles which can be shifted by centralized feedback but not by decentralized 

control. The final part of the report addressed the question of designing efficient decentralized 

controllers for FSS. One factor which must be borne in mind in this analysis is that the 

controllability and observability Grammian matrices which are usually studied are inherently open- 



loop quantities; they therefore do not reflect any decentralized structure present in the controller. In 

order to overcome this problem, the new closed-loop GrQmmianS were introduced, and their utility 

in the analysis of decentralized FSS controllers demonstrated. In particular, they were shown to 

lead to a natural technique for performing a sequential loop-closing form of controller design, 

based OR closing the single inputlsingle output feedback loop between each decentralized 

sensor/actuator pair in turn. 
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